资源算法Wide ResNet model in PyTorch

Wide ResNet model in PyTorch

2019-09-16 | |  166 |   0 |   0

functional-zoo

Model definitions and pretrained weights for PyTorch and Tensorflow

PyTorch, unlike lua torch, has autograd in it's core, so using modular structure of torch.nn modules is not necessary, one can easily allocate needed Variables and write a function that utilizes them, which is sometimes more convenient. This repo contains model definitions in this functional way, with pretrained weights for some models.

Weights are serialized as a dict of arrays in hdf5, so should be easily loadable in other frameworks. Thanks to @edgarriba we have cpp_parser for loading weights in C++.

More models coming! We also plan to add definitions for other frameworks in future, probably tiny-dnn first. Contributions are welcome.

See also imagenet classification with PyTorch demo.ipynb

Models

All models were validated to produce reported accuracy using imagenet-validation.py script (depends on OpenCV python bindings).

To load weights in Python first do pip install hickle, then:

import hickle as hklweights = hkl.load('resnet-18-export.hkl')

Unfortunately, hickle py3 support is not yet ready, so the models will be resaved in torch pickle format with torch.utils.model_zoo.load_url support, e.g.:

weights = model_zoo.load_url('https://s3.amazonaws.com/modelzoo-networks/wide-resnet-50-2-export-5ae25d50.pth')

Also, make_dot was moved to a separate package: PyTorchViz

Folded

Models below have batch_norm parameters and statistics folded into convolutional layers for speed. It is not recommended to use them for finetuning.

ImageNet

| model | notebook | val error | download | size | |:------|:--------:|:--------:|:--------:|:----:| | VGG-16 | vgg-16.ipynb | 30.09, 10.69 | url coming | 528 MB | | NIN | nin-export.ipynb | 32.96, 12.29 | url | 33 MB | | ResNet-18 (fb) | resnet-18-export.ipynb | 30.43, 10.76 | url | 42 MB | | ResNet-18-AT | resnet-18-at-export.ipynb | 29.44, 10.12 | url | 44.1 MB | | ResNet-34 (fb) | resnet-34-export.ipynb | 26.72, 8.74 | url | 78.3 MB | | WRN-50-2 | wide-resnet-50-2-export.ipynb | 22.0, 6.05 | url | 246 MB |

Fast Neural Style

Notebook: fast-neural-style.ipynb

Models:

| model | download | size | |:------|:--------:|:----:| | candy.hkl | url | 7.1 MB | | feathers.hkl | url | 7.1 MB | | wave.hkl | url | 7.1 MB |

Models with batch normalization

Coming

上一篇:pytorch-capsule

下一篇:pytorch-pruning

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...