资源算法PyTorch-Style-Transfer

PyTorch-Style-Transfer

2019-09-16 | |  148 |   0 |   0

|

PyTorch-Style-Transfer

This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included by ModelDepot. We also provide Torch implementation and MXNet implementation.

Tabe of content

MSG-Net

Multi-style Generative Network for Real-time Transfer [arXiv] [project]
Hang ZhangKristin Dana
@article{zhang2017multistyle,
    title={Multi-style Generative Network for Real-time Transfer},
    author={Zhang, Hang and Dana, Kristin},
    journal={arXiv preprint arXiv:1703.06953},
    year={2017}
}
figure1.jpg

Stylize Images Using Pre-trained MSG-Net

  1. Download the pre-trained model bash git clone git@github.com:zhanghang1989/PyTorch-Style-Transfer.git cd PyTorch-Style-Transfer/experiments bash models/download_model.sh

  2. Camera Demo bash python camera_demo.py demo --model models/21styles.model 

  3. Test the model bash python main.py eval --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg --model models/21styles.model --content-size 1024

  4. If you don't have a GPU, simply set --cuda=0. For a different style, set --style-image path/to/style. If you would to stylize your own photo, change the --content-image path/to/your/photo. More options:myimage.gif

    • --content-image: path to content image you want to stylize.

    • --style-image: path to style image (typically covered during the training).

    • --model: path to the pre-trained model to be used for stylizing the image.

    • --output-image: path for saving the output image.

    • --content-size: the content image size to test on.

    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Train Your Own MSG-Net Model

  1. Download the COCO dataset bash bash dataset/download_dataset.sh

  2. Train the model bash python main.py train --epochs 4

  3. If you would like to customize styles, set --style-folder path/to/your/styles. More options:

    • --style-folder: path to the folder style images.

    • --vgg-model-dir: path to folder where the vgg model will be downloaded.

    • --save-model-dir: path to folder where trained model will be saved.

    • --cuda: set it to 1 for running on GPU, 0 for CPU.

Neural Style

Image Style Transfer Using Convolutional Neural Networks by Leon A. Gatys, Alexander S. Ecker, and Matthias Bethge.

python main.py optim --content-image images/content/venice-boat.jpg --style-image images/21styles/candy.jpg
  • --content-image: path to content image.

  • --style-image: path to style image.

  • --output-image: path for saving the output image.

  • --content-size: the content image size to test on.

  • --style-size: the style image size to test on.

  • --cuda: set it to 1 for running on GPU, 0 for CPU.

Acknowledgement

The code benefits from outstanding prior work and their implementations including: - Texture Networks: Feed-forward Synthesis of Textures and Stylized Images by Ulyanov et al. ICML 2016. (code) - Perceptual Losses for Real-Time Style Transfer and Super-Resolution by Johnson et al. ECCV 2016 (code) and its pytorch implementation code by Abhishek. - Image Style Transfer Using Convolutional Neural Networks by Gatys et al. CVPR 2016 and its torch implementation code by Johnson.

上一篇:PyTorch YOLOv3

下一篇:illustration2vec

用户评价
全部评价

热门资源

  • TensorFlow-Course

    This repository aims to provide simple and read...

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • mxnet_VanillaCNN

    This is a mxnet implementation of the Vanilla C...

  • DuReader_QANet_BiDAF

    Machine Reading Comprehension on DuReader Usin...

  • Klukshu-Sockeye-...

    KLUKSHU SOCKEYE PROJECTS 2016 This repositor...