资源论文Unary Integer Linear Programming with Structural Restrictions

Unary Integer Linear Programming with Structural Restrictions

2019-11-05 | |  66 |   42 |   0
Abstract Recently a number of algorithmic results have appeared which show the tractability of Integer Linear Programming (ILP) instances under strong restrictions on variable domains and/or coefficients (AAAI 2016, AAAI 2017, IJCAI 2017). In this paper, we target ILPs where neither the variable domains nor the coefficients are restricted by a fixed constant or parameter; instead, we only require that our instances can be encoded in unary. We provide new algorithms and lower bounds for such ILPs by exploiting the structure of their variable interactions, represented as a graph. Our first set of results focuses on solving ILP instances through the use of a graph parameter called clique-width, which can be seen as an extension of treewidth which also captures wellstructured dense graphs. In particular, we obtain a polynomial-time algorithm for instances of bounded clique-width whose domain and coefficients are polynomially bounded by the input size, and we complement this positive result by a number of algorithmic lower bounds. Afterwards, we turn our attention to ILPs with acyclic variable interactions. In this setting, we obtain a complexity map for the problem with respect to the graph representation used and restrictions on the encoding.

上一篇:Machine Learning and Constraint Programming for Relational-To-Ontology Schema Mapping

下一篇:Divide and Conquer: Towards Faster Pseudo-Boolean Solving Jan Elffers and Jakob Nordstro?m

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...