资源论文Solving Exist-Random Quantified Stochastic Boolean Satisfiability via Clause Selection

Solving Exist-Random Quantified Stochastic Boolean Satisfiability via Clause Selection

2019-11-05 | |  107 |   47 |   0
Abstract Stochastic Boolean satisfiability (SSAT) is an expressive language to formulate decision problems with randomness. Solving SSAT formulas has the same PSPACE-complete computational complexity as solving quantified Boolean formulas (QBFs). Despite its broad applications and profound theoretical values, SSAT has received relatively little attention compared to QBF. In this paper, we focus on exist-random quantified SSAT formulas, also known as E-MAJSAT, which is a special fragment of SSAT commonly applied in probabilistic conformant planning, posteriori hypothesis, and maximum expected utility. Based on clause selection, a recently proposed QBF technique, we propose an algorithm to solve E-MAJSAT. Moreover, our method can provide an approximate solution to E-MAJSAT with a lower bound when an exact answer is too expensive to compute. Experiments show that the proposed algorithm achieves significant performance gains and memory savings over the state-of-the-art SSAT solvers on a number of benchmark formulas, and provides useful lower bounds for cases where prior methods fail to compute exact answers.

上一篇:DMC: A Distributed Model Counter

下一篇:Solving (Weighted) Partial MaxSAT by Dynamic Local Search for SAT Zhendong Lei and Shaowei Cai?

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...