pytorch-cnn-finetune
Gives access to the most popular CNN architectures pretrained on ImageNet.
Automatically replaces classifier on top of the network, which allows you to train a network with a dataset that has a different number of classes.
Allows you to use images with any resolution (and not only the resolution that was used for training the original model on ImageNet).
Allows adding a Dropout layer or a custom pooling layer.
ResNet (resnet18, resnet34, resnet50, resnet101, resnet152)
DenseNet (densenet121, densenet169, densenet201, densenet161)
Inception v3 (inception_v3)
VGG (vgg11, vgg11_bn, vgg13, vgg13_bn, vgg16, vgg16_bn, vgg19, vgg19_bn)
SqueezeNet (squeezenet1_0, squeezenet1_1)
AlexNet (alexnet)
ResNeXt (resnext101_32x4d, resnext101_64x4d)
NASNet-A Large (nasnetalarge)
NASNet-A Mobile (nasnetamobile)
Inception-ResNet v2 (inceptionresnetv2)
Dual Path Networks (dpn68, dpn68b, dpn92, dpn98, dpn131, dpn107)
Inception v4 (inception_v4)
Xception (xception)
Squeeze-and-Excitation Networks (senet154, se_resnet50, se_resnet101, se_resnet152, se_resnext50_32x4d, se_resnext101_32x4d)
Python 3.5+
PyTorch 0.3+
pip install cnn_finetune
Default value for pretrained argument in make_model is changed from False to True. Now call make_model('resnet18', num_classes=10) is equal to make_model('resnet18', num_classes=10, pretrained=True)
from cnn_finetune import make_model
model = make_model('resnet18', num_classes=10, pretrained=True)model = make_model('nasnetalarge', num_classes=10, pretrained=True, dropout_p=0.5)import torch.nn as nn
model = make_model('inceptionresnetv2', num_classes=10, pretrained=True, pool=nn.AdaptiveMaxPool2d(1))VGG and AlexNet models use fully-connected layers, so you have to additionally pass the input size of images when constructing a new model. This information is needed to determine the input size of fully-connected layers.
model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256))import torch.nn as nn
def make_classifier(in_features, num_classes):
return nn.Sequential(
nn.Linear(in_features, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256), classifier_factory=make_classifier)>> model = make_model('resnext101_64x4d', num_classes=10, pretrained=True)
>> print(model.original_model_info)
ModelInfo(input_space='RGB', input_size=[3, 224, 224], input_range=[0, 1], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>> print(model.original_model_info.mean)
[0.485, 0.456, 0.406]See examples/cifar10.py file (requires PyTorch 0.4).
下一篇:attn2d
还没有评论,说两句吧!
热门资源
DuReader_QANet_BiDAF
Machine Reading Comprehension on DuReader Usin...
ETD_cataloguing_a...
ETD catalouging project using allennlp
allennlp_extras
allennlp_extras Some utilities build on top of...
allennlp-dureader
An Apache 2.0 NLP research library, built on Py...
honk-honk-motherf...
honk-honk-motherfucker
智能在线
400-630-6780
聆听.建议反馈
E-mail: support@tusaishared.com