Fine-tune pretrained Convolutional Neural Networks with PyTorch.

Features
Gives access to the most popular CNN architectures pretrained on ImageNet.
Automatically replaces classifier on top of the network, which allows you to train a network with a dataset that has a different number of classes.
Allows you to use images with any resolution (and not only the resolution that was used for training the original model on ImageNet).
Allows adding a Dropout layer or a custom pooling layer.
Supported architectures and models
ResNet (resnet18
, resnet34
, resnet50
, resnet101
, resnet152
)
DenseNet (densenet121
, densenet169
, densenet201
, densenet161
)
Inception v3 (inception_v3
)
VGG (vgg11
, vgg11_bn
, vgg13
, vgg13_bn
, vgg16
, vgg16_bn
, vgg19
, vgg19_bn
)
SqueezeNet (squeezenet1_0
, squeezenet1_1
)
AlexNet (alexnet
)
ResNeXt (resnext101_32x4d
, resnext101_64x4d
)
NASNet-A Large (nasnetalarge
)
NASNet-A Mobile (nasnetamobile
)
Inception-ResNet v2 (inceptionresnetv2
)
Dual Path Networks (dpn68
, dpn68b
, dpn92
, dpn98
, dpn131
, dpn107
)
Inception v4 (inception_v4
)
Xception (xception
)
Squeeze-and-Excitation Networks (senet154
, se_resnet50
, se_resnet101
, se_resnet152
, se_resnext50_32x4d
, se_resnext101_32x4d
)
Requirements
Installation
pip install cnn_finetune
Major changes:
Version 0.4
Default value for pretrained
argument in make_model
is changed from False
to True
. Now call make_model('resnet18', num_classes=10)
is equal to make_model('resnet18', num_classes=10, pretrained=True)
Example usage:
Make a model with ImageNet weights for 10 classes
from cnn_finetune import make_model
model = make_model('resnet18', num_classes=10, pretrained=True)
Make a model with Dropout
model = make_model('nasnetalarge', num_classes=10, pretrained=True, dropout_p=0.5)
Make a model with Global Max Pooling instead of Global Average Pooling
import torch.nn as nn
model = make_model('inceptionresnetv2', num_classes=10, pretrained=True, pool=nn.AdaptiveMaxPool2d(1))
Make a VGG16 model that takes images of size 256x256 pixels
VGG and AlexNet models use fully-connected layers, so you have to additionally pass the input size of images when constructing a new model. This information is needed to determine the input size of fully-connected layers.
model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256))
Make a VGG16 model that takes images of size 256x256 pixels and uses a custom classifier
import torch.nn as nn
def make_classifier(in_features, num_classes):
return nn.Sequential(
nn.Linear(in_features, 4096),
nn.ReLU(inplace=True),
nn.Linear(4096, num_classes),
)
model = make_model('vgg16', num_classes=10, pretrained=True, input_size=(256, 256), classifier_factory=make_classifier)
Show preprocessing that was used to train the original model on ImageNet
>> model = make_model('resnext101_64x4d', num_classes=10, pretrained=True)
>> print(model.original_model_info)
ModelInfo(input_space='RGB', input_size=[3, 224, 224], input_range=[0, 1], mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
>> print(model.original_model_info.mean)
[0.485, 0.456, 0.406]
CIFAR10 Example
See examples/cifar10.py file (requires PyTorch 0.4).