资源论文Zero Shot Learning via Low-rank Embedded Semantic AutoEncoder

Zero Shot Learning via Low-rank Embedded Semantic AutoEncoder

2019-11-05 | |  66 |   46 |   0
Abstract Zero-shot learning (ZSL) has been widely researched and get successful in machine learning. Most existing ZSL methods aim to accurately recognize objects of unseen classes by learning a shared mapping from the feature space to a semantic space. However, such methods did not investigate in-depth whether the mapping can precisely reconstruct the original visual feature. Motivated by the fact that the data have low intrinsic dimensionality e.g. low-dimensional subspace. In this paper, we formulate a novel framework named Lowrank Embedded Semantic AutoEncoder (LESAE) to jointly seek a low-rank mapping to link visual features with their semantic representations. Taking the encoder-decoder paradigm, the encoder part aims to learn a low-rank mapping from the visual feature to the semantic space, while decoder part manages to reconstruct the original data with the learned mapping. In addition, a non-greedy iterative algorithm is adopted to solve our model. Extensive experiments on six benchmark datasets demonstrate its superiority over several state-ofthe-art algorithms.

上一篇:Exploiting Graph Regularized Multi-dimensional Hawkes Processes for Modeling Events with Spatio-temporal Characteristics

下一篇:Fast Cross-Validation

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...