Abstract
Cross-modal hashing methods have attracted considerable attention. Most pioneer approaches only preserve the neighborhood relationship by constructing the correlations among heterogeneous modalities. However, they neglect the fact that the high-dimensional data often exists on a lowdimensional manifold embedded in the ambient space and the relative proximity between the neighbors is also important. Although some methods leverage the manifold learning to generate the hash codes, most of them fail to explicitly explore the discriminative information in the class labels and discard the binary constraints during optimization, generating large quantization errors. To address these issues, in this paper, we present a novel cross-modal hashing method, named Supervised Discrete Manifold-Embedded Cross-Modal Hashing (SDMCH). It can not only exploit the nonlinear manifold structure of data and construct the correlation among heterogeneous multiple modalities, but also fully utilize the semantic information. Moreover, the hash codes can be generated discretely by an iterative optimization algorithm, which can avoid the large quantization errors. Extensive experimental results on three benchmark datasets demonstrate that SDMCH outperforms ten state-of-the-art cross-modal hashing methods.