资源论文Positive and Unlabeled Learning via Loss Decomposition and Centroid Estimation

Positive and Unlabeled Learning via Loss Decomposition and Centroid Estimation

2019-11-05 | |  79 |   40 |   0
Abstract Positive and Unlabeled learning (PU learning) aims to train a binary classifier based on only positive and unlabeled examples, where the unlabeled examples could be either positive or negative. The state-of-the-art algorithms usually cast PU learning as a cost-sensitive learning problem and impose distinct weights to different training examples via a manual or automatic way. However, such weight adjustment or estimation can be inaccurate and thus often lead to unsatisfactory performance. Therefore, this paper regards all unlabeled examples as negative, which means that some of the original positive data are mistakenly labeled as negative. By doing so, we convert PU learning into the risk minimization problem in the presence of false negative label noise, and propose a novel PU learning algorithm termed “Loss Decomposition and Centroid Estimation” (LDCE). By decomposing the hinge loss function into two parts, we show that only the second part is influenced by label noise, of which the adverse effect can be reduced by estimating the centroid of negative examples. We intensively validate our approach on synthetic dataset, UCI benchmark datasets and real-world datasets, and the experimental results firmly demonstrate the effectiveness of our approach when compared with other state-of-the-art PU learning methodologies.

上一篇:Deep Binary Prototype Multi-label Learning

下一篇:Student-t Variational Autoencoder for Robust Density Estimation

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...