资源论文Towards Enabling Binary Decomposition for Partial Label Learning?

Towards Enabling Binary Decomposition for Partial Label Learning?

2019-11-05 | |  61 |   40 |   0
Abstract The task of partial label (PL) learning is to learn a multi-class classifier from training examples each associated with a set of candidate labels, among which only one corresponds to the ground-truth label. It is well known that for inducing multi-class predictive model, the most straightforward solution is binary decomposition which works by either onevs-rest or one-vs-one strategy. Nonetheless, the ground-truth label for each PL training example is concealed in its candidate label set and thus not accessible to the learning algorithm, binary decomposition cannot be directly applied under partial label learning scenario. In this paper, a novel approach is proposed to solving partial label learning problem by adapting the popular one-vs-one decomposition strategy. Specifically, one binary classifier is derived for each pair of class labels, where PL training examples with distinct relevancy to the label pair are used to generate the corresponding binary training set. After that, one binary classifier is further derived for each class label by stacking over predictions of existing binary classifiers to improve generalization. Experimental studies on both artificial and real-world PL data sets clearly validate the effectiveness of the proposed binary decomposition approach w.r.t state-of-the-art partial label learning techniques.

上一篇:Does Tail Label Help for Large-Scale Multi-Label Learning Tong Wei and Yu-Feng Li?

下一篇:Multi-Label Co-Training?

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...