资源论文De-Biasing Covariance-Regularized Discriminant Analysis

De-Biasing Covariance-Regularized Discriminant Analysis

2019-11-05 | |  58 |   31 |   0
Abstract Fisher’s Linear Discriminant Analysis (FLD) is a well-known technique for linear classification, feature extraction and dimension reduction. The empirical FLD relies on two key estimations from the data – the mean vector for each class and the (inverse) covariance matrix. To improve the accuracy of FLD under the High Dimension Low Sample Size (HDLSS) settings, Covariance-Regularized FLD (CRLD) has been proposed to use shrunken covariance estimators, such as Graphical Lasso, to strike a balance between biases and variances. Though CRLD could obtain better classification accuracy, it usually incurs bias and converges to the optimal result with a slower asymptotic rate. Inspired by the recent progress in de-biased Lasso, we propose a novel FLD classifier, DBLD, which improves classification accuracy of CRLD through de-biasing. Theoretical analysis shows that DBLD possesses better asymptotic properties than CRLD. We conduct experiments on both synthetic datasets and real application datasets to confirm the correctness of our theoretical analysis and demonstrate the superiority of DBLD over classical FLD, CRLD and other downstream competitors under HDLSS settings.

上一篇:Multi-Label Co-Training?

下一篇:Deep Multi-View Concept Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...