资源论文Multi-Level Metric Learning via Smoothed Wasserstein Distance

Multi-Level Metric Learning via Smoothed Wasserstein Distance

2019-11-05 | |  66 |   43 |   0
Abstract Traditional metric learning methods aim to learn a single Mahalanobis distance matrix M, which, however, is not discriminative enough to characterize the complex and heterogeneous data. Besides, if the descriptors of the data are not strictly aligned, Mahalanobis distance would fail to exploit the relations among them. To tackle these problems, in this paper, we propose a multi-level metric learning method using a smoothed Wasserstein distance to characterize the errors between any two samples, where the ground distance is considered as a Mahalanobis distance. Since smoothed Wasserstein distance provides not only a distance value but also a flow-network indicating how the probability mass is optimally transported between the bins, it is very effective in comparing two samples whether they are aligned or not. In addition, to make full use of the global and local structures that exist in data features, we further model the commonalities between various classification through a shared distance matrix and the classification-specific idiosyncrasies with additional auxiliary distance matrices. An efficient algorithm is developed to solve the proposed new model. Experimental evaluations on four standard databases show that our method obviously outperforms other state-of-the-art methods.

上一篇:MUSCAT: Multi-Scale Spatio-Temporal Learning with Application to Climate Modeling

下一篇:Label Enhancement for Label Distribution Learning

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...