资源论文Domain Adaptation via Tree Kernel Based Maximum Mean Discrepancy for User Consumption Intention Identification

Domain Adaptation via Tree Kernel Based Maximum Mean Discrepancy for User Consumption Intention Identification

2019-11-05 | |  59 |   36 |   0
Abstract Identifying user consumption intention from social media is of great interests to downstream applications. Since such task is domain-dependent, deep neural networks have been applied to learn transferable features for adapting models from a source domain to a target domain. A basic idea to solve this problem is reducing the distribution difference between the source domain and the target domain such that the transfer error can be bounded. However, the feature transferability drops dramatically in higher layers of deep neural networks with increasing domain discrepancy. Hence, previous work has to use a few target domain annotated data to train domain-specific layers. In this paper, we propose a deep transfer learning framework for consumption intention identification, to reduce the data bias and enhance the transferability in domainspecific layers. In our framework, the representation of the domain-specific layer is mapped to a reproducing kernel Hilbert space, where the mean embeddings of different domain distributions can be explicitly matched. By using an optimal tree kernel method for measuring the mean embedding matching, the domain discrepancy can be effectively reduced. The framework can learn transferable features in a completely unsupervised manner with statistical guarantees. Experimental results on five different domain datasets show that our approach dramatically outperforms state-of-the-art baselines, and it is general enough to be applied to more scenarios. The source code and datasets can be found at http://ir.hit.edu.cn/% 7exding/index_english.htm.

上一篇:Adversarial Active Learning for Sequence Labeling and Generation

下一篇:A Deep Modular RNN Approach for Ethos Mining

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...