资源论文Metadata-dependent Infinite Poisson Factorization for Efficiently Modelling Sparse and Large Matrices in Recommendation

Metadata-dependent Infinite Poisson Factorization for Efficiently Modelling Sparse and Large Matrices in Recommendation

2019-11-06 | |  67 |   39 |   0
Abstract Matrix Factorization (MF) is widely used in Recommender Systems (RSs) for estimating missing ratings in the rating matrix. MF faces major challenges of handling very sparse and large data. Poisson Factorization (PF) as an MF variant addresses these challenges with high efficiency by only computing on those non-missing elements. However, ignoring the missing elements in computation makes PF weak or incapable for dealing with columns or rows with very few observations (corresponding to sparse items or users). In this work, Metadata-dependent Poisson Factorization (MPF) is invented to address the user/item sparsity by integrating user/item metadata into PF. MPF adds the metadata-based observed entries to the factorized PF matrices. In addition, similar to MF, choosing the suitable number of latent components for PF is very expensive on very large datasets. Accordingly, we further extend MPF to Metadata-dependent Infinite Poisson Factorization (MIPF) that integrates Bayesian Nonparametric (BNP) technique to automatically tune the number of latent components. Our empirical results show that, by integrating metadata, MPF/MIPF significantly outperform the state-of-the-art PF models for sparse and large datasets. MIPF also effectively estimates the number of latent components.

上一篇:Parameterised Queries and Lifted Query Answering

下一篇:Efficient Symbolic Integration for Probabilistic Inference

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...