资源论文Stochastic Anytime Search for Bounding Marginal MAP

Stochastic Anytime Search for Bounding Marginal MAP

2019-11-06 | |  57 |   36 |   0
Abstract The Marginal MAP inference task is known to be extremely hard particularly because the evaluation of each complete MAP assignment involves an exact likelihood computation (a combinatorial sum). For this reason, most recent state-of-the-art solvers that focus on computing anytime upper and lower bounds on the optimal value are limited to solving instances with tractable conditioned summation subproblems. In this paper, we develop new searchbased bounding schemes for Marginal MAP that produce anytime upper and lower bounds without performing exact likelihood computations. The empirical evaluation demonstrates the effectiveness of our new methods against the current best-performing search-based bounds.

上一篇:Lifted Filtering via Exchangeable Decomposition

下一篇:Estimation with Incomplete Data: The Linear Case

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...