资源论文Planning in Factored State and Action Spaces with Learned Binarized Neural Network Transition Models

Planning in Factored State and Action Spaces with Learned Binarized Neural Network Transition Models

2019-11-07 | |  63 |   46 |   0
Abstract In this paper, we leverage the efficiency of Binarized Neural Networks (BNNs) to learn complex state transition models of planning domains with discretized factored state and action spaces. In order to directly exploit this transition structure for planning, we present two novel compilations of the learned factored planning problem with BNNs based on reductions to Boolean Satisfiability (FDSAT-Plan) as well as Binary Linear Programming (FD-BLP-Plan). Experimentally, we show the effectiveness of learning complex transition models with BNNs, and test the runtime efficiency of both encodings on the learned factored planning problem. After this initial investigation, we present an incremental constraint generation algorithm based on generalized landmark constraints to improve the planning accuracy of our encodings. Finally, we show how to extend the best performing encoding (FD-BLP-Plan+) beyond goals to handle factored planning problems with rewards.

上一篇:Phrase Table as Recommendation Memory for Neural Machine Translation

下一篇:GraspNet: An Efficient Convolutional Neural Network for Real-time Grasp Detection for Low-powered Devices

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...