资源论文Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition

Harnessing Synthesized Abstraction Images to Improve Facial Attribute Recognition

2019-11-07 | |  143 |   61 |   0
Abstract Facial attribute recognition is an important and yet challenging research topic. Different from most previous approaches which predict attributes only based on the whole images, this paper leverages facial parts locations for better attribute prediction. A facial abstraction image which contains both local facial parts and facial texture information is introduced. This abstraction image is generated by a Generative Adversarial Network (GAN). Then we build a dual-path facial attribute recognition network to utilize features from the original face images and facial abstraction images. Empirically, the features of facial abstraction images are complementary to features of original face images. With the facial parts localized by the abstraction images, our method improves facial attributes recognition, especially the attributes located on small face regions. Extensive evaluations conducted on CelebA and LFWA benchmark datasets show that state-ofthe-art performance is achieved.

上一篇:View-Volume Network for Semantic Scene Completion from a Single Depth Image

下一篇:Image Captioning with Visual-Semantic LSTM

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • dynamical system ...

    allows to preform manipulations of heavy or bul...

  • The Variational S...

    Unlike traditional images which do not offer in...