资源论文Image-level to Pixel-wise Labeling: From Theory to Practice

Image-level to Pixel-wise Labeling: From Theory to Practice

2019-11-07 | |  114 |   78 |   0
Abstract Conventional convolutional neural networks (CNNs) have achieved great success in image semantic segmentation. Existing methods mainly focus on learning pixel-wise labels from an image directly. In this paper, we advocate tackling the pixel-wise segmentation problem by considering the image-level classification labels. Theoretically, we analyze and discuss the effects of image-level labels on pixel-wise segmentation from the perspective of information theory. In practice, an end-to-end segmentation model is built by fusing the image-level and pixel-wise labeling networks. A generative network is included to reconstruct the input image and further boost the segmentation model training with an auxiliary loss. Extensive experimental results on benchmark dataset demonstrate the effectiveness of the proposed method, where good image-level labels can significantly improve the pixel-wise segmentation accuracy.

上一篇:Progressive Generative Hashing for Image Retrieval

下一篇:Collaborative and Attentive Learning for Personalized Image Aesthetic Assessment

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Shape-based Autom...

    We present an algorithm for automatic detection...