资源论文Efficient Learning in Linearly Solvable MDP Models Ang Li Paul R Schrater

Efficient Learning in Linearly Solvable MDP Models Ang Li Paul R Schrater

2019-11-08 | |  62 |   44 |   0
Abstract Linearly solvable Markov Decision Process (MDP) models are a powerful subclass of problems with a simple structure that allow the policy to be written directly in terms of the uncontrolled (passive) dynamics of the environment and the goals of the agent. However, there have been no learning algorithms for this class of models. In this research, we develop a robust learning approach to linearly solvable MDPs. To exploit the simple solution for general problems, we show how to construct passive dynamics from any transition matrix, use Bayesian updating to estimate the model parameters and apply approximate and efficient Bayesian exploration to speed learning. In addition, we reduce the computational cost of learning using intermittent Bayesian updating and policy solving. We also gave a polynomial theoretical time complexity bound for the convergence of our learning algorithm, and demonstrate a linear bound for the subclass of the reinforcement learning problems with the property that the transition error depends only on the agent itself. Test results for our algorithm in a grid world are presented, comparing our algorithm with the BEB algorithm. The results showed that our algorithm learned more than the BEB algorithm without losing convergence speed, so that the advantage of our algorithm increased as the environment got more complex. We also showed that our algorithm’s performance is more stable after convergence. Finally, we show how to apply our approach to the Cellular Telephones problem by defining the passive dynamics.

上一篇:Agent Failures in All-Pay Auctions Yoad Lewenberg1 Omer Lev1 Yoram Bachrach2 Jeffrey S. Rosenschein1

下一篇:Multi-Winner Social Choice with Incomplete Preferences Tyler Lu Craig Boutilier

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...