资源论文Event-Detecting Multi-Agent MDPs: Complexity and Constant-Factor Approximation

Event-Detecting Multi-Agent MDPs: Complexity and Constant-Factor Approximation

2019-11-15 | |  102 |   46 |   0

Abstract Planning under uncertainty for multiple agents has grown rapidly with the development of formal models such as multi-agent MDPs and decentralized MDPs. But despite their richness, the applicability of these models remains limited due to their computational complexity. We present the class of event-detecting multi-agent MDPs (eMMDPs), designed to detect multiple mobile targets by a team of sensor agents. We show that eMMDPs are NPHard and present a scalable 2-approximation algorithm for solving them using matroid theory and constraint optimization. The complexity of the algorithm is linear in the state-space and number of agents, quadratic in the horizon, and exponential only in a small parameter that depends on the interaction among the agents. Despite the worst-case approximation ratio of 2, experimental results show that the algorithm produces near-optimal policies for a range of test problems

上一篇:Exchanging Reputation Information Between Communities: A Payment-Function Approach

下一篇:A Kernel Method for Market Clearing

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...