资源论文Local Search: Is Brute-Force Avoidable

Local Search: Is Brute-Force Avoidable

2019-11-15 | |  102 |   40 |   0

Abstract Many local search algorithms are based on searching in the k-exchange neighborhood. This is the set of solutions that can be obtained from the current solution by exchanging at most k elements. As a rule of thumb, the larger k is, the better are the chances of fifinding an improved solution. However, for inputs of size n, a na¨ıve brute-force search of the k-exchange neighborhood requires nO(k) time, which is not practical even for very small values of k. We show that for several classes of sparse graphs, like planar graphs, graphs of bounded vertex degree and graphs excluding some fifixed graph as a minor, an improved solution in the k-exchange neighborhood for many problems can be found much more effificiently. Our algorithms run in time O(τ (k) · nc), where τ is a function depending on k only and c is a constant independent of k. We demonstrate the applicability of this approach on different problems like r-CENTER, VERTEX COVER, ODD CYCLE TRANSVERSAL, MAX-CUT, and MIN-BISECTION. In particular, on planar graphs, all our algorithms searching for a klocal improvement run in time O(2O(k) ·n2), which is polynomial for k = O(log n). We also complement the algorithms with complexity results indicating that—brute force search is unavoidable—in more general classes of sparse graphs

上一篇:Duplicate Avoidance in Depth-First Search with Applications to Treewidth

下一篇:Minimum Proof Graphs and Fastest-Cut-First Search Heuristics

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...