资源论文Self-Managing Associative Memory for Dynamic Acquisition of Expertise in High-Level Domains

Self-Managing Associative Memory for Dynamic Acquisition of Expertise in High-Level Domains

2019-11-15 | |  73 |   60 |   0

Abstract Self-organizing maps can be used to implement an associative memory for an intelligent system that dynamically learns about new high-level domains over time. SOMs are an attractive option for implementing associative memory: they are fast, easily parallelized, and digest a stream of incoming data into a topographically organized collection of models where more frequent classes of data are represented by higher-resolution collections of models. Typically, the distribution of models in an SOM, once developed, remains fairly stable, but developing expertise in a new high-level domain requires altering the allocation of models. We use a mixture of analysis and empirical studies to characterize the behavior of SOMs for high-level associative memory, fifinding that new high-resolution collections of models develop quickly. High-resolution areas of the SOM decay rapidly unless actively refreshed, but in a large SOM, the ratio between growth rate and decay rate may be high enough to support both fast learning and long-term memory

上一篇:Adaptive Cluster Ensemble Selection

下一篇:Angluin-Style Learning of NFA

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...