资源论文Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

Meta-SR: A Magnification-Arbitrary Network for Super-Resolution

2019-09-16 | |  68 |   48 |   0 0 0
Abstract Recent research on super-resolution has achieved great success due to the development of deep convolutional neural networks (DCNNs). However, super-resolution of arbitrary scale factor has been ignored for a long time. Most previous researchers regard super-resolution of different scale factors as independent tasks. They train a specific model for each scale factor which is inefficient in computing, and prior work only take the super-resolution of several integer scale factors into consideration. In this work, we propose a novel method called Meta-SR to firstly solve super-resolution of arbitrary scale factor (including noninteger scale factors) with a single model. In our Meta-SR, the Meta-Upscale Module is proposed to replace the traditional upscale module. For arbitrary scale factor, the MetaUpscale Module dynamically predicts the weights of the upscale filters by taking the scale factor as input and use these weights to generate the HR image of arbitrary size. For any low-resolution image, our Meta-SR can continuously zoom in it with arbitrary scale factor by only using a single model. We evaluated the proposed method through extensive experiments on widely used benchmark datasets on single image super-resolution. The experimental results show the superiority of our Meta-Upscale.

上一篇:Learning Regularity in Skeleton Trajectories for Anomaly Detection in Videos

下一篇:Recurrent MVSNet for High-resolution Multi-view Stereo Depth Inference

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...