资源论文A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets

A Sparse Covariance Function for Exact Gaussian Process Inference in Large Datasets

2019-11-15 | |  69 |   46 |   0

Abstract Despite the success of Gaussian processes (GPs) in modelling spatial stochastic processes, dealing with large datasets is still challenging. The problem arises by the need to invert a potentially large covariance matrix during inference. In this paper we address the complexity problem by constructing a new stationary covariance function (Mercer kernel) that naturally provides a sparse covariance matrix. The sparseness of the matrix is defifined by hyperparameters optimised during learning. The new covariance function enables exact GP inference and performs comparatively to the squared-exponential one, at a lower computational cost. This allows the application of GPs to large-scale problems such as ore grade prediction in mining or 3D surface modelling. Experiments show that using the proposed covariance function, very sparse covariance matrices are normally obtained which can be effectively used for faster inference and less memory usage.

上一篇:Learning Conditional Preference Networks with Queries

下一篇:Speeding Up Inference in Markov Logic Networks by Preprocessing to Reduce the Size of the Resulting Grounded Network

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...