资源On the Consistency of AUC Pairwise Optimization Wei Gao and Zhi-Hua Zhou?

On the Consistency of AUC Pairwise Optimization Wei Gao and Zhi-Hua Zhou?

2019-11-18 | |  47 |   1 |   0
Abstract AUC (Area Under ROC Curve) has been an important criterion widely used in diverse learning tasks. To optimize AUC, many learning approaches have been developed, most working with pairwise surrogate losses. Thus, it is important to study the AUC consistency based on minimizing pairwise surrogate losses. In this paper, we introduce the generalized calibration for AUC optimization, and prove that it is a necessary condition for AUC consistency. We then provide a sufficient condition for AUC consistency, and show its usefulness in studying the consistency of various surrogate losses, as well as the invention of new consistent losses. We further derive regret bounds for exponential and logistic losses, and present regret bounds for more general surrogate losses in the realizable setting. Finally, we prove regret bounds that disclose the equivalence between the pairwise exponential loss of AUC and univariate exponential loss of accuracy.

上一篇:From Weighted to Unweighted Model Counting ? † ‡

下一篇:Information Gathering in Networks via Active Exploration Adish Singla? Eric Horvitz Pushmeet Kohli

用户评价
全部评价

热门资源

  • Multi-Source Cros...

    Modern NLP applications have enjoyed a great bo...

  • Reference Network...

    Neural Machine Translation (NMT) has achieved n...

  • Soft Contextual D...

    While data augmentation is an important trick t...

  • Style Transformer...

    Disentangling the content and style in the lat...

  • Towards Fine-grai...

    In this paper, we focus on the task of finegra...