资源算法vqa-winner-cvprw-2017

vqa-winner-cvprw-2017

2019-09-17 | |  100 |   0 |   0

2017 VQA Challenge Winner (CVPR'17 Workshop)

pytorch implementation of Tips and Tricks for Visual Question Answering: Learnings from the 2017 Challenge by Teney et al.

Model architecture

Prerequisites

Data

Preparation

  • To download and extract vqav2, glove, and pretrained visual features: bash bash scripts/download_extract.sh

  • To prepare data for training: bash python scripts/preproc.py

  • The structure of data/ directory should look like this: <ul> <li>data/</li> <li>zips/ <ul> <li>v2_XXX...zip</li> <li>...</li> <li>glove...zip</li> <li>trainval_36.zip</li> </ul></li> <li>glove/ <ul> <li>glove...txt</li> <li>...</li> </ul></li> <li>v2_XXX.json</li> <li>...</li> <li>trainval_resnet...tsv (The above are files created after executing scripts/download_extract.sh)</li> <li>tokenizers/ <ul> <li>...</li> </ul></li> <li>dict_ans.pkl</li> <li>dict_q.pkl</li> <li>glove_pretrained_300.npy</li> <li>train_qa.pkl</li> <li>val_qa.pkl</li> <li>train_vfeats.pkl</li> <li>val_vfeats.pkl (The above are files created after executing scripts/preproc.py)

Train

Use default parameters:

bash scripts/train.sh

Notes

  • Huge re-factor (especially data preprocessing), tested based on pytorch 0.4.1 and python 3.6

  • Training for 20 epochs reach around 50% training accuracy. (model seems buggy in my implementation)

  • After all the preprocessing, data/ directory may be up to 38G+

  • Some of preproc.py and utils.py are based on this repo

Resources


上一篇:Visual Search

下一篇:pt-dilate-rnn

用户评价
全部评价

热门资源

  • seetafaceJNI

    项目介绍 基于中科院seetaface2进行封装的JAVA...

  • Keras-ResNeXt

    Keras ResNeXt Implementation of ResNeXt models...

  • spark-corenlp

    This package wraps Stanford CoreNLP annotators ...

  • shih-styletransfer

    shih-styletransfer Code from Style Transfer ...

  • inferno-boilerplate

    This is a very basic boilerplate example for pe...