资源论文HIEDS: A Generic and Efficient Approach to Hierarchical Dataset Summarization

HIEDS: A Generic and Efficient Approach to Hierarchical Dataset Summarization

2019-11-25 | |  42 |   54 |   0
Abstract The rapid growth of open data on the Web promotes the development of data portals that facilitate finding useful datasets. To help users quickly inspect a dataset found in a portal, we propose to summarize its contents and generate a hierarchical grouping of entities connected by relations. Our generic approach, called HIEDS, considers coverage of dataset, height of hierarchy, cohesion within groups, overlap between groups, and homogeneity of groups, and integrates these configurable factors into a combinatorial optimization problem to solve. We present an efficient solution, to serve users with dynamically configured summaries with acceptable latency. We systematically experiment with our approach on real-world RDF datasets.

上一篇:Timeline Summarization from Social Media with Life Cycle Models

下一篇:Questimator: Generating Knowledge Assessments for Arbitrary Topics

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...