资源论文Questimator: Generating Knowledge Assessments for Arbitrary Topics

Questimator: Generating Knowledge Assessments for Arbitrary Topics

2019-11-25 | |  46 |   36 |   0
Abstract Formative assessments allow learners to quickly identify knowledge gaps. In traditional educational settings, expert instructors can create assessments, but in informal learning environment, it is difficult for novice learners to self assess because they don’t know what they don’t know. This paper introduces Questimator, an automated system that generates multiple-choice assessment questions for any topic contained within Wikipedia. Given a topic, Questimator traverses the Wikipedia graph to find and rank related topics, and uses article text to form questions, answers and distractor options. In a study with 833 participants from Mechanical Turk, we found that participants’ scores on Questimatorgenerated quizzes correlated well with their scores on existing online quizzes on topics ranging from philosophy to economics. Also Questimator generates questions with comparable discriminatory power as existing online quizzes. Our results suggest Questimator may be useful for assessing learning in topics for which there is not an existing quiz.

上一篇:HIEDS: A Generic and Efficient Approach to Hierarchical Dataset Summarization

下一篇:Efficient Algorithms for Spanning Tree Centrality

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...