资源论文BATCH -S HAPING FOR LEARNINGC ONDITIONAL CHANNEL GATED NETWORKS

BATCH -S HAPING FOR LEARNINGC ONDITIONAL CHANNEL GATED NETWORKS

2020-01-02 | |  60 |   50 |   0

Abstract

We present a method that trains large capacity neural networks with significantly improved accuracy and lower dynamic computational cost. We achieve this by gating the deep-learning architecture on a fine-grained-level. Individual convolutional maps are turned on/off conditionally on features in the network. To achieve this, we introduce a new residual block architecture that gates convolutional channels in a fine-grained manner. We also introduce a generally applicable tool batch-shaping that matches the marginal aggregate posteriors of features in a neural network to a pre-specified prior distribution. We use this novel technique to force gates to be more conditional on the data. We present results on CIFAR-10 and ImageNet datasets for image classification, and Cityscapes for semantic segmentation. Our results show that our method can slim down large architectures conditionally, such that the average computational cost on the data is on par with a smaller architecture, but with higher accuracy. In particular, on ImageNet, our ResNet50 and ResNet34 gated networks obtain 74.60% and 72.55% top-1 accuracy compared to the 69.76% accuracy of the baseline ResNet18 model, for similar complexity. We also show that the resulting networks automatically learn to use more features for difficult examples and fewer features for simple examples.

上一篇:CYCLICAL STOCHASTIC GRADIENT MCMC FORBAYESIAN DEEP LEARNING

下一篇:INTRIGUING PROPERTIES OF ADVERSARIAL TRAININGAT SCALE

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...