资源论文INTRIGUING PROPERTIES OF ADVERSARIAL TRAININGAT SCALE

INTRIGUING PROPERTIES OF ADVERSARIAL TRAININGAT SCALE

2020-01-02 | |  55 |   38 |   0

Abstract

Adversarial training is one of the main defenses against adversarial attacks. In this paper, we provide the first rigorous study on diagnosing elements of large-scale adversarial training on ImageNet, which reveals two intriguing properties. First, we study the role of normalization. Batch Normalization (BN) is a crucial element for achieving state-of-the-art performance on many vision tasks, but we show it may prevent networks from obtaining strong robustness in adversarial training. One unexpected observation is that, for models trained with BN, simply removing clean images from training data largely boosts adversarial robustness, i.e., 18.3%. We relate this phenomenon to the hypothesis that clean images and adversarial images are drawn from two different domains. This twodomain hypothesis may explain the issue of BN when training with a mixture of clean and adversarial images, as estimating normalization statistics of this mixture distribution is challenging. Guided by this two-domain hypothesis, we show disentangling the mixture distribution for normalization, i.e., applying separate BNs to clean and adversarial images for statistics estimation, achieves much stronger robustness. Additionally, we find that enforcing BNs to behave consistently at training and testing can further enhance robustness. Second, we study the role of network capacity. We find our so-called “deep” networks are still shallow for the task of adversarial learning. Unlike traditional classification tasks where accuracy is only marginally improved by adding more layers to “deep” networks (e.g., ResNet-152), adversarial training exhibits a much stronger demand on deeper networks to achieve higher adversarial robustness. This robustness improvement can be observed substantially and consistently even by pushing the network capacity to an unprecedented scale, i.e., ResNet-638.

上一篇:BATCH -S HAPING FOR LEARNINGC ONDITIONAL CHANNEL GATED NETWORKS

下一篇:ROBUST SUBSPACE RECOVERY LAYER FORU NSUPERVISED ANOMALY DETECTION

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...