资源论文Linear readout from a neural population with partial correlation data

Linear readout from a neural population with partial correlation data

2020-01-06 | |  78 |   53 |   0

Abstract

How much information does a neural population convey about a stimulus? Answers to this question are known to strongly depend on the correlation of response variability in neural populations. These noise correlations, however, are essentially immeasurable as the number of parameters in a noise correlation matrix grows quadratically with population size. Here, we suggest to bypass this problem by imposing a parametric model on a noise correlation matrix. Our basic assumption is that noise correlations arise due to common inputs between neurons. On average, noise correlations will therefore reflect signal correlations, which can be measured in neural populations. We suggest an explicit parametric dependency between signal and noise correlations. We show how this dependency can be used to ”fill the gaps” in noise correlations matrices using an iterative application of the Wishart distribution over positive definitive matrices. We apply our method to data from the primary somatosensory cortex of monkeys performing a two-alternativeforced choice task. We compare the discrimination thresholds read out from the population of recorded neurons with the discrimination threshold of the monkey and show that our method predicts different results than simpler, average schemes of noise correlations.

上一篇:Hallucinations in Charles Bonnet Syndrome Induced by Homeostasis: a Deep Boltzmann Machine Model

下一篇:Monte-Carlo Planning in Large POMDPs

用户评价
全部评价

热门资源

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Rating-Boosted La...

    The performance of a recommendation system reli...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...