资源论文Monte-Carlo Planning in Large POMDPs

Monte-Carlo Planning in Large POMDPs

2020-01-06 | |  71 |   40 |   0

Abstract

This paper introduces a Monte-Carlo algorithm for online planning in large POMDPs. The algorithm combines a Monte-Carlo update of the agent’s belief state with a Monte-Carlo tree search from the current belief state. The new algorithm, POMCP, has two important properties. First, MonteCarlo sampling is used to break the curse of dimensionality both during belief state updates and during planning. Second, only a black box simulator of the POMDP is required, rather than explicit probability distributions. These properties enable POMCP to plan effectively in significantly larger POMDPs than has previously been possible. We demonstrate its effectiveness in three large POMDPs. We scale up a well-known benchmark problem, rocksample, by several orders of magnitude. We also introduce two challenging new POMDPs: 10 × 10 battleship and partially observable PacMan, with approximately 1018 and 1056 states respectively. Our MonteCarlo planning algorithm achieved a high level of performance with no prior knowledge, and was also able to exploit simple domain knowledge to achieve better results with less search. POMCP is the first general purpose planner to achieve high performance in such large and unfactored POMDPs.

上一篇:Linear readout from a neural population with partial correlation data

下一篇:Probabilistic latent variable models for distinguishing between cause and effect

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...