资源论文Optimal learning rates for Kernel Conjugate Gradient regression

Optimal learning rates for Kernel Conjugate Gradient regression

2020-01-06 | |  65 |   33 |   0

Abstract

We prove rates of convergence in the statistical sense for kernel-based least squares regression using a conjugate gradient algorithm, where regularization against overfitting is obtained by early stopping. This method is directly related to Kernel Partial Least Squares, a regression method that combines supervised dimensionality reduction with least squares projection. The rates depend on two key quantities: first, on the regularity of the target regression function and second, on the effective dimensionality of the data mapped into the kernel space. Lower bounds on attainable rates depending on these two quantities were established in earlier literature, and we obtain upper bounds for the considered method that match these lower bounds (up to a log factor) if the true regression function belongs to the reproducing kernel Hilbert space. If this assumption is not fulfilled, we obtain similar convergence rates provided additional unlabeled data are available. The order of the learning rates match state-of-the-art results that were recently obtained for least squares support vector machines and for linear regularization operators.

上一篇:Link Discovery using Graph Feature Tracking Emile Richard

下一篇:Trading off Mistakes and Don’t-Know Predictions

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...