资源论文Trading off Mistakes and Don’t-Know Predictions

Trading off Mistakes and Don’t-Know Predictions

2020-01-06 | |  89 |   63 |   0

Abstract

We discuss an online learning framework in which the agent is allowed to say “I don’t know” as well as making incorrect predictions on given examples. We analyze the trade off between saying “I don’t know” and making mistakes. If the number of don’t-know predictions is required to be zero, the model reduces to the well-known mistake-bound model introduced by Littlestone [Lit88]. On the other hand, if no mistakes are allowed, the model reduces to KWIK framework introduced by Li et. al. [LLW08]. We propose a general, though inefficient, algorithm for general finite concept classes that minimizes the number of don’t-know predictions subject to a given bound on the number of allowed mistakes. We then present specific polynomial-time algorithms for the concept classes of monotone disjunctions and linear separators with a margin.

上一篇:Optimal learning rates for Kernel Conjugate Gradient regression

下一篇:Sparse Coding for Learning Interpretable Spatio-Temporal Primitives

用户评价
全部评价

热门资源

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Hierarchical Task...

    We extend hierarchical task network planning wi...

  • Shape-based Autom...

    We present an algorithm for automatic detection...