资源论文Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels

Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels

2020-01-10 | |  59 |   43 |   0

Abstract

We consider regularized risk minimization in a large dictionary of Reproducing kernel Hilbert Spaces (RKHSs) over which the target function has a sparse representation. This setting, commonly referred to as Sparse Multiple Kernel Learning (MKL), may be viewed as the non-parametric extension of group sparsity in linear models. While the two dominant algorithmic strands of sparse learning, namely convex relaxations using 图片.png norm (e.g., Lasso) and greedy methods (e.g., OMP), have both been rigorously extended for group sparsity, the sparse MKL literature has so far mainly adopted the former with mild empirical success. In this paper, we close this gap by proposing a Group-OMP based framework for sparse MKL. Unlike 图片.png -MKL, our approach decouples the sparsity regularizer (via a direct l0 constraint) from the smoothness regularizer (via RKHS norms), which leads to better empirical performance and a simpler optimization procedure that only requires a black-box single-kernel solver. The algorithmic development and empirical studies are complemented by theoretical analyses in terms of Rademacher generalization bounds and sparse recovery conditions analogous to those for OMP [27] and Group-OMP [16].

上一篇:Higher-Order Correlation Clustering for Image Segmentation

下一篇:Learning a Tree of Metrics with Disjoint Visual Features

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...