资源论文Learning a Tree of Metrics with Disjoint Visual Features

Learning a Tree of Metrics with Disjoint Visual Features

2020-01-10 | |  96 |   95 |   0

Abstract

We introduce an approach to learn discriminative visual representations while exploiting external semantic knowledge about object category relationships. Given a hierarchical taxonomy that captures semantic similarity between the objects, we learn a corresponding tree of metrics (ToM). In this tree, we have one metric for each non-leaf node of the object hierarchy, and each metric is responsible for discriminating among its immediate subcategory children. Specifically, a Mahalanobis metric learned for a given node must satisfy the appropriate (dis)similarity constraints generated only among its subtree members’ training instances. To further exploit the semantics, we introduce a novel regularizer coupling the metrics that prefers a sparse disjoint set of features to be selected for each metric relative to its ancestor (supercategory) nodes’ metrics. Intuitively, this reflects that visual cues most useful to distinguish the generic classes (e.g., feline vs. canine) should be different than those cues most useful to distinguish their component fine-grained classes (e.g., Persian cat vs. Siamese cat). We validate our approach with multiple image datasets using the WordNet taxonomy, show its advantages over alternative metric learning approaches, and analyze the meaning of attribute features selected by our algorithm.

上一篇:Non-parametric Group Orthogonal Matching Pursuit for Sparse Learning with Multiple Kernels

下一篇:Large-Scale Category Structure Aware Image Categorization

用户评价
全部评价

热门资源

  • Deep Cross-media ...

    Cross-media retrieval is a research hotspot in ...

  • Regularizing RNNs...

    Recently, caption generation with an encoder-de...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Visual Reinforcem...

    For an autonomous agent to fulfill a wide range...

  • Joint Pose and Ex...

    Facial expression recognition (FER) is a challe...