资源论文On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference

On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference

2020-01-10 | |  60 |   30 |   0

Abstract

Probabilistic logics are receiving a lot of attention today because of their expressive power for knowledge representation and learning. However, this expressivity is detrimental to the tractability of inference, when done at the propositional level. To solve this problem, various lifted inference algorithms have been proposed that reason at the first-order level, about groups of objects as a whole. Despite the existence of various lifted inference approaches, there are currently no completeness results about these algorithms. The key contribution of this paper is that we introduce a formal definition of lifted inference that allows us to reason about the completeness of lifted inference algorithms relative to a particular class of probabilistic models. We then show how to obtain a completeness result using a first-order knowledge compilation approach for theories of formulae containing up to two logical variables.

上一篇:MRF: Capturing Spatial and Semantic Structure in the Parameters for Scene Understanding

下一篇:Semi-supervised Regression via Parallel Field Regularization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...