资源论文Semi-supervised Regression via Parallel Field Regularization

Semi-supervised Regression via Parallel Field Regularization

2020-01-11 | |  76 |   38 |   0

Abstract
This paper studies the problem of semi-supervised learning from the vector field perspective. Many of the existing work use the graph Laplacian to ensure the smoothness of the prediction function on the data manifold. However, beyond smoothness, it is suggested by recent theoretical work that we should ensure second order smoothness for achieving faster rates of convergence for semisupervised regression problems. To achieve this goal, we show that the second order smoothness measures the linearity of the function, and the gradient field of a linear function has to be a parallel vector field. Consequently, we propose to find a function which minimizes the empirical error, and simultaneously requires its gradient field to be as parallel as possible. We give a continuous objective function on the manifold and discuss how to discretize it by using random points. The discretized optimization problem turns out to be a sparse linear system which can be solved very efficiently. The experimental results have demonstrated the effectiveness of our proposed approach.

上一篇:On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference

下一篇:An Unsupervised Decontamination Procedure For Improving The Reliability Of Human Judgments

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • Learning to learn...

    The move from hand-designed features to learned...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...