资源论文Minimax Optimal Algorithms for Unconstrained Linear Optimization

Minimax Optimal Algorithms for Unconstrained Linear Optimization

2020-01-16 | |  66 |   37 |   0

Abstract

We design and analyze minimax-optimal algorithms for online linear optimization games where the player’s choice is unconstrained. The player strives to minimize regret, the difference between his loss and the loss of a post-hoc benchmark strategy. While the standard benchmark is the loss of the best strategy chosen from a bounded comparator set, we consider a very broad range of benchmark functions. The problem is cast as a sequential multi-stage zero-sum game, and we give a thorough analysis of the minimax behavior of the game, providing characterizations for the value of the game, as well as both the player’s and the adversary’s optimal strategy. We show how these objects can be computed efficiently under certain circumstances, and by selecting an appropriate benchmark, we construct a novel hedging strategy for an unconstrained betting game.

上一篇:Bayesian Inference and Online Experimental Design for Mapping Neural Microcircuits

下一篇:Phase Retrieval using Alternating Minimization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...