资源论文Phase Retrieval using Alternating Minimization

Phase Retrieval using Alternating Minimization

2020-01-16 | |  57 |   40 |   0

Abstract

Phase retrieval problems involve solving linear equations, but with missing sign (or phase, for complex numbers). Over the last two decades, a popular generic empirical approach to the many variants of this problem has been one of alternating minimization; i.e. alternating between estimating the missing phase information, and the candidate solution. In this paper, we show that a simple alternating minimization algorithm geometrically converges to the solution of one such problem – finding a vector x from y, A, where y = 图片.png and |z| denotes a vector of element-wise magnitudes of z – under the assumption that A is Gaussian. Empirically, our algorithm performs similar to recently proposed convex techniques for this variant (which are based on “lifting” to a convex matrix problem) in sample complexity and robustness to noise. However, our algorithm is much more efficient and can scale to large problems. Analytically, we show geometric convergence to the solution, and sample complexity that is off by log factors from obvious lower bounds. We also establish close to optimal scaling for the case when the unknown vector is sparse. Our work represents the only known theoretical guarantee for alternating minimization for any variant of phase retrieval problems in the non-convex setting.

上一篇:Minimax Optimal Algorithms for Unconstrained Linear Optimization

下一篇:When Are Overcomplete Topic Models Identifiable? Uniqueness of Tensor Tucker Decompositions with Structured Sparsity

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...