资源论文Real-Time Inference for a Gamma Process Model of Neural Spiking

Real-Time Inference for a Gamma Process Model of Neural Spiking

2020-01-16 | |  46 |   49 |   0

Abstract

With simultaneous measurements from ever increasing populations of neurons, there is a growing need for sophisticated tools to recover signals from individual neurons. In electrophysiology experiments, this classically proceeds in a two-step process: (i) threshold the waveforms to detect putative spikes and (ii) cluster the waveforms into single units (neurons). We extend previous Bayesian nonparametric models of neural spiking to jointly detect and cluster neurons using a Gamma process model. Importantly, we develop an online approximate inference scheme enabling real-time analysis, with performance exceeding the previous state-of-theart. Via exploratory data analysis—using data with partial ground truth as well as two novel data sets—we find several features of our model collectively contribute to our improved performance including: (i) accounting for colored noise, (ii) detecting overlapping spikes, (iii) tracking waveform dynamics, and (iv) using multiple channels. We hope to enable novel experiments simultaneously measuring many thousands of neurons and possibly adapting stimuli dynamically to probe ever deeper into the mysteries of the brain.

上一篇:On the Sample Complexity of Subspace Learning

下一篇:Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...