资源论文Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

Curvature and Optimal Algorithms for Learning and Minimizing Submodular Functions

2020-01-16 | |  64 |   54 |   0

Abstract

We investigate three related and important problems connected to machine learning: approximating a submodular function everywhere, learning a submodular function (in a PAC-like setting [28]), and constrained minimization of submodular functions. We show that the complexity of all three problems depends on the “curvature” of the submodular function, and provide lower and upper bounds that refine and improve previous results [2, 6, 8, 27]. Our proof techniques are fairly generic. We either use a black-box transformation of the function (for approximation and learning), or a transformation of algorithms to use an appropriate surrogate function (for minimization). Curiously, curvature has been known to influence approximations for submodular maximization [3, 29], but its effect on minimization, approximation and learning has hitherto been open. We complete this picture, and also support our theoretical claims by empirical results.

上一篇:Real-Time Inference for a Gamma Process Model of Neural Spiking

下一篇:Small-Variance Asymptotics for Hidden Markov Models

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...