资源论文Learning Adaptive Value of Information for Structured Prediction

Learning Adaptive Value of Information for Structured Prediction

2020-01-16 | |  66 |   38 |   0

Abstract

Discriminative methods for learning structured models have enabled wide-spread use of very rich feature representations. However, the computational cost of feature extraction is prohibitive for large-scale or time-sensitive applications, often dominating the cost of inference in the models. Significant efforts have been devoted to sparsity-based model selection to decrease this cost. Such feature selection methods control computation statically and miss the opportunity to finetune feature extraction to each input at run-time. We address the key challenge of learning to control fine-grained feature extraction adaptively, exploiting nonhomogeneity of the data. We propose an architecture that uses a rich feedback loop between extraction and prediction. The run-time control policy is learned using efficient value-function approximation, which adaptively determines the value of information of features at the level of individual variables for each input. We demonstrate significant speedups over state-of-the-art methods on two challenging datasets. For articulated pose estimation in video, we achieve a more accurate state-of-the-art model that is also faster, with similar results on an OCR task.

上一篇:On the Relationship Between Binary Classification, Bipartite Ranking, and Binary Class Probability Estimation

下一篇:Multi-Task Bayesian Optimization

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...