资源论文Multi-Task Bayesian Optimization

Multi-Task Bayesian Optimization

2020-01-16 | |  64 |   37 |   0

Abstract

Bayesian optimization has recently been proposed as a framework for automatically tuning the hyperparameters of machine learning models and has been shown to yield state-of-the-art performance with impressive ease and efficiency. In this paper, we explore whether it is possible to transfer the knowledge gained from previous optimizations to new tasks in order to find optimal hyperparameter settings more efficiently. Our approach is based on extending multi-task Gaussian processes to the framework of Bayesian optimization. We show that this method significantly speeds up the optimization process when compared to the standard single-task approach. We further propose a straightforward extension of our algorithm in order to jointly minimize the average error across multiple tasks and demonstrate how this can be used to greatly speed up k-fold cross-validation. Lastly, we propose an adaptation of a recently developed acquisition function, entropy search, to the cost-sensitive, multi-task setting. We demonstrate the utility of this new acquisition function by leveraging a small dataset to explore hyperparameter settings for a large dataset. Our algorithm dynamically chooses which dataset to query in order to yield the most information per unit cost.

上一篇:Learning Adaptive Value of Information for Structured Prediction

下一篇:On Decomposing the Proximal Map

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...