资源论文Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty

Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty

2020-01-16 | |  37 |   47 |   0

Abstract

Typical blur from camera shake often deviates from the standard uniform convolutional assumption, in part because of problematic rotations which create greater blurring away from some unknown center point. Consequently, successful blind deconvolution for removing shake artifacts requires the estimation of a spatiallyvarying or non-uniform blur operator. Using ideas from Bayesian inference and convex analysis, this paper derives a simple non-uniform blind deblurring algorithm with a spatially-adaptive image penalty. Through an implicit normalization process, this penalty automatically adjust its shape based on the estimated degree of local blur and image structure such that regions with large blur or few prominent edges are discounted. Remaining regions with modest blur and revealing edges therefore dominate on average without explicitly incorporating structureselection heuristics. The algorithm can be implemented using an optimization strategy that is virtually tuning-parameter free and simpler than existing methods, and likely can be applied in other settings such as dictionary learning. Detailed theoretical analysis and empirical comparisons on real images serve as validation.

上一篇:Zero-Shot Learning Through Cross-Modal Transfer

下一篇:Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...