资源论文Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion

Active Learning for Probabilistic Hypotheses Using the Maximum Gibbs Error Criterion

2020-01-16 | |  42 |   35 |   0

Abstract

We introduce a new objective function for pool-based Bayesian active learning with probabilistic hypotheses. This objective function, called the policy Gibbs error, is the expected error rate of a random classifier drawn from the prior distribution on the examples adaptively selected by the active learning policy. Exact maximization of the policy Gibbs error is hard, so we propose a greedy strategy that maximizes the Gibbs error at each iteration, where the Gibbs error on an instance is the expected error of a random classifier selected from the posterior label distribution on that instance. We apply this maximum Gibbs error criterion to three active learning scenarios: non-adaptive, adaptive, and batch active learning. In each scenario, we prove that the criterion achieves near-maximal policy Gibbs error when constrained to a fixed budget. For practical implementations, we provide approximations to the maximum Gibbs error criterion for Bayesian conditional random fields and transductive Naive Bayes. Our experimental results on a named entity recognition task and a text classification task show that the maximum Gibbs error criterion is an effective active learning criterion for noisy models.

上一篇:Non-Uniform Camera Shake Removal Using a Spatially-Adaptive Sparse Penalty

下一篇:On Sampling from the Gibbs Distribution with Random Maximum A-Posteriori Perturbations

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...