资源论文Capacity of strong attractor patterns to model behavioural and cognitive prototypes

Capacity of strong attractor patterns to model behavioural and cognitive prototypes

2020-01-17 | |  43 |   34 |   0

Abstract

We solve the mean field equations for a stochastic Hopfield network with temperature (noise) in the presence of strong, i.e., multiply stored, patterns, and use this solution to obtain the storage capacity of such a network. Our result provides for the first time a rigorous solution of the mean filed equations for the standard Hopfield model and is in contrast to the mathematically unjustifiable replica technique that has been used hitherto for this derivation. We show that the critical temperature for stability of a strong pattern is equal to its degree or multiplicity, when the sum of the squares of degrees of the patterns is negligible compared to the network size. In the case of a single strong pattern, when the ratio of the number of all stored pattens and the network size is a positive constant, we obtain the distribution of the overlaps of the patterns with the mean field and deduce that the storage capacity for retrieving a strong pattern exceeds that for retrieving a simple pattern by a multiplicative factor equal to the square of the degree of the strong pattern. This square law property provides justification for using strong patterns to model attachment types and behavioural prototypes in psychology and psychotherapy.

上一篇:Adaptive dropout for training deep neural networks

下一篇:Optimal integration of visual speed across different spatiotemporal frequency channels

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...