资源论文Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space

Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space

2020-01-19 | |  58 |   33 |   0

Abstract

While robust parameter estimation has been well studied in parametric density estimation, there has been little investigation into robust density estimation in the nonparametric setting. We present a robust version of the popular kernel density estimator (KDE). As with other estimators, a robust version of the KDE is useful since sample contamination is a common issue with datasets. What “robustness” means for a nonparametric density estimate is not straightforward and is a topic we explore in this paper. To construct a robust KDE we scale the traditional KDE and project it to its nearest weighted KDE in the L2 norm. This yields a scaled and projected KDE (SPKDE). Because the squared L2 norm penalizes point-wise errors superlinearly this causes the weighted KDE to allocate more weight to high density regions. We demonstrate the robustness of the SPKDE with numerical experiments and a consistency result which shows that asymptotically the SPKDE recovers the uncontaminated density under sufficient conditions on the contamination.

上一篇:A Complete Variational Tracker

下一篇:(Almost) No Label No Cry

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...