资源论文(Almost) No Label No Cry

(Almost) No Label No Cry

2020-01-19 | |  60 |   37 |   0

Abstract

In Learning with Label Proportions (LLP), the objective is to learn a supervised classifier when, instead of labels, only label proportions for bags of observations are known. This setting has broad practical relevance, in particular for privacy preserving data processing. We first show that the mean operator, a statistic which aggregates all labels, is minimally sufficient for the minimization of many proper scoring losses with linear (or kernelized) classifiers without using labels. We provide a fast learning algorithm that estimates the mean operator via a manifold regularizer with guaranteed approximation bounds. Then, we present an iterative learning algorithm that uses this as initialization. We ground this algorithm in Rademacher-style generalization bounds that fit the LLP setting, introducing a generalization of Rademacher complexity and a Label Proportion Complexity measure. This latter algorithm optimizes tractable bounds for the corresponding bag-empirical risk. Experiments are provided on fourteen domains, whose size ranges up to 图片.png300K observations. They display that our algorithms are scalable and tend to consistently outperform the state of the art in LLP. Moreover, in many cases, our algorithms compete with or are just percents of AUC away from the Oracle that learns knowing all labels. On the largest domains, half a dozen proportions can suffice, i.e. roughly 40K times less than the total number of labels.

上一篇:Robust Kernel Density Estimation by Scaling and Projection in Hilbert Space

下一篇:A Synaptical Story of Persistent Activity with Graded Lifetime in a Neural System

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...