资源论文Kullback-Leibler Proximal Variational Inference

Kullback-Leibler Proximal Variational Inference

2020-02-04 | |  70 |   36 |   0

Abstract 

We propose a new variational inference method based on a proximal framework that uses the Kullback-Leibler (KL) divergence as the proximal term. We make two contributions towards exploiting the geometry and structure of the variational bound. First, we propose a KL proximal-point algorithm and show its equivalence to variational inference with natural gradients (e.g., stochastic variational inference). Second, we use the proximal framework to derive efficient variational algorithms for non-conjugate models. We propose a splitting procedure to separate non-conjugate terms from conjugate ones. We linearize the non-conjugate terms to obtain subproblems that admit a closed-form solution. Overall, our approach converts inference in a non-conjugate model to subproblems that involve inference in well-known conjugate models. We show that our method is applicable to a wide variety of models and can result in computationally efficient algorithms. Applications to real-world datasets show comparable performances to existing methods.

上一篇:End-To-End Memory Networks

下一篇:Learning Structured Output Representation using Deep Conditional Generative Models

用户评价
全部评价

热门资源

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • The Variational S...

    Unlike traditional images which do not offer in...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...