资源论文Learning Structured Output Representation using Deep Conditional Generative Models

Learning Structured Output Representation using Deep Conditional Generative Models

2020-02-04 | |  62 |   42 |   0

Abstract 

Supervised deep learning has been successfully applied to many recognition problems. Although it can approximate a complex many-to-one function well when a large amount of training data is provided, it is still challenging to model complex structured output representations that effectively perform probabilistic inference and make diverse predictions. In this work, we develop a deep conditional generative model for structured output prediction using Gaussian latent variables. The model is trained efficiently in the framework of stochastic gradient variational Bayes, and allows for fast prediction using stochastic feed-forward inference. In addition, we provide novel strategies to build robust structured prediction algorithms, such as input noise-injection and multi-scale prediction objective at training. In experiments, we demonstrate the effectiveness of our proposed algorithm in comparison to the deterministic deep neural network counterparts in generating diverse but realistic structured output predictions using stochastic inference. Furthermore, the proposed training methods are complimentary, which leads to strong pixel-level object segmentation and semantic labeling performance on Caltech-UCSD Birds 200 and the subset of Labeled Faces in the Wild dataset.

上一篇:Kullback-Leibler Proximal Variational Inference

下一篇:Rectified Factor Networks

用户评价
全部评价

热门资源

  • The Variational S...

    Unlike traditional images which do not offer in...

  • Learning to Predi...

    Much of model-based reinforcement learning invo...

  • Stratified Strate...

    In this paper we introduce Stratified Strategy ...

  • A Mathematical Mo...

    Direct democracy, where each voter casts one vo...

  • Rating-Boosted La...

    The performance of a recommendation system reli...